广度优先搜索实现走迷宫问题(c++实现)

本文介绍了如何运用广度优先搜索(BFS)算法来解决走迷宫的问题,并强调了BFS能确保找到最短路径。通过创建一个与迷宫大小相同的二维数组path来记录路径信息,从而输出走出迷宫的完整路径。文章提供了具体的C++代码实现和成功解决迷宫问题的效果展示。
摘要由CSDN通过智能技术生成

广度优先搜索可以找到最短的走出迷宫的路径,看能不能走出迷宫很简单,由于广度优先搜索总是找到离某点最近的下一个点,找到的路径一定是最短路径,详见算法笔记上关于广度优先搜索的介绍,问题是如何输出走出迷宫的路径,我们可以申请一个和迷宫一样大的储存点信息的path二维数组,path中的任意元素为到达他之前的点的信息,然后输出path即可。

代码如下:

#include"pch.h"
#include<iostream>
#include<ctime>
#include<cstdlib>
#include<queue>
#include<cstdio>
using namespace std;

//生成迷宫
const int HEIGHT = 10;
const int WIDTH = 10;
bool isFound = false;
int maze[HEIGHT][WIDTH];
void initialMaze()
{
	maze[0][0] = 0;//入口
	maze[HEIGHT - 1][WIDTH - 1] = 0;//出口
	for (int i = 0; i < HEIGHT; i++)//用随机数0,1填充迷宫
	{
		for (int j = 0; j < WIDTH; j++)
		{
			if (i == 0 && j == 0)
				continue;
			if (i == HEIGHT - 1 && j == WIDTH - 1)
				continue;
			maze[i][j] = rand() % 2;
		}
	}
	//展示生成的迷宫
	for (int i = 0; i < HEIGHT; i++)
	{
	
使用广度优先搜索来解决迷宫问题需要借助一个队列来实现。以下是一个基于队列的 C++ 实现示例: ```c++ #include <iostream> #include <vector> #include <queue> using namespace std; // 定义迷宫类型 typedef vector<vector<int>> Maze; // 定义状态类型 struct State { int x, y, step; }; // 定义方向数组 const int dx[] = {0, 0, 1, -1}; const int dy[] = {1, -1, 0, 0}; // 判断是否越界 bool isValid(const Maze& maze, int x, int y) { return x >= 0 && x < maze.size() && y >= 0 && y < maze[0].size() && maze[x][y] == 0; } // 广度优先搜索 int bfs(Maze& maze, int sx, int sy, int ex, int ey) { queue<State> q; q.push({sx, sy, 0}); // 将起点入队 maze[sx][sy] = -1; // 标记为已访问 while (!q.empty()) { State s = q.front(); q.pop(); if (s.x == ex && s.y == ey) { // 到达终点 return s.step; } for (int i = 0; i < 4; i++) { // 尝试四个方向 int nx = s.x + dx[i], ny = s.y + dy[i]; if (isValid(maze, nx, ny)) { q.push({nx, ny, s.step + 1}); // 将新状态入队 maze[nx][ny] = -1; // 标记为已访问 } } } return -1; // 无解 } int main() { // 读入迷宫 int n, m; cin >> n >> m; Maze maze(n, vector<int>(m)); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { cin >> maze[i][j]; } } // 搜索 int steps = bfs(maze, 0, 0, n - 1, m - 1); if (steps >= 0) { cout << steps << endl; } else { cout << "No" << endl; } return 0; } ``` 在上面的实现中,我们使用一个结构体来表示状态,包括当前位置坐标和已经的步数。在搜索过程中,我们使用一个队列来保存状态,从起点开始,依次尝试四个方向,将新状态加入队列中,直到到达终点或者队列为空为止。搜索过程中,我们使用 -1 表示已访问状态,0 表示未访问状态。如果找到了到终点的路径,则返回路径长度,否则返回 -1 表示无解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值